
Table of Contents

1Table of Contents

1LDAP TCL Extension Overview

1LDAP TCL Extension Installation

2LDAP TCL Commands

2LDAP_AllInOneSearch

4LDAP_SetNamePassword

5LDAP_Connect

6LDAP_Search

7LDAP_Disconnect

8Known Issues and Limitations

9Bibliography and Additional Resources

LDAP TCL Extension Overview

The LDAP TCL extension provides a way of performing LDAP directory searches from within the TCL language. The extension currently only supports LDAP searches; this seems to be the only thing people are interested in automating in TCL. I have not had any requests to do LDAP modifies or updates, but this could be added if needed. The TCL extension (DLL) has been written for version 8.3 of TCL or above and running in the Microsoft Windows operating systems (NT, 2000, 98, XP) environments. Two APIs are used in the C source code of the extension: The Netscape LDAP SDK v4.0 and the TCL 8.3 API.
LDAP TCL Extension Installation

1. Extract all of the contents of the LDAP_TCL.zip to a temporary location.

2. Copy the folder, LDAP_TCL to your TCL lib directory. Example: \TCL\Lib\LDAP_TCL

3. Copy the \system32\nsldapssl32v40.dll API to the Windows System 32 directory.

4. There are two ways to load the extension into the TCL interpreter:

A. package require LDAP

B. load <Insert File Path>/LDAP_TCL.dll

LDAP TCL Commands

LDAP_AllInOneSearch

Overview:

This is the only TCL LDAP search command you should have to use. It does several tasks:
1. Connects to the LDAP server using the ldap_init C function call.

2. Binds to the LDAP directory using the ldap_simple_bind_s C function call.
3. Searches an LDAP directory using the ldap_search_s C function call.
4. Disconnects from the LDAP directory using the ldap_unbind C function call.

5. Returns a TCL list to the TCL interpreter of all records that matched the search filter.
Parameters:

LDAP_AllInOneSearch Server Port Directory_Base SearchFilter {Return Attributes [Optional]}
Possible Return Values:

1. TCL list of all entries that matched the search filter. If more than one entry matches the search filter then a two-dimensional list is returned.
2. NULL (An empty string is returned to the TCL interpreter if no entries matched the search filter)
3. ERROR {followed by a description of the error}

Sample TCL code:

if { [catch {

 # Load the LDAP package.
 # An optional way to load the package is through the load command:
 # load “<Insert FILE Path>/LDAP_TCL.dll”
 package require LDAP

 # Perform a search against a valid LDAP server,TCP port,search base, and search filter.

 # This will return the attributes, mail, cn, and telephonenumber for all entries that match the surname of

 # Nichols. Note: Wild card searches can be done too. Example mail=*Nichols*

 set result [LDAP_AllInOneSearch INSERT_SERVER_NAME 389 "o=INSERT_BASE,c=US" (sn=Nichols) mail cn telephonenumber]

 puts "\"$result\""

 puts ""

 # Parse the LDAP record(s) returned in the TCL list.

 for {set j 0} {$j <[llength $result]} {incr j} {

 set myRecord [lindex $result $j]

 for {set i 0} {$i <[llength $myRecord] } {incr i 2} {

 puts "[lindex $myRecord $i]=[lindex $myRecord [expr $i + 1]]"

 }

 puts ""

 }

 puts "Total entries returned: [llength $result]"

} doRequestCatch] } {

 puts $doRequestCatch"

}
LDAP_SetNamePassword

Overview:

This TCL command sets the LDAP username and password which will be used for all future ldap_simple_bind_s C function calls. Both the LDAP_Connect and LDAP_AllInOneSearch TCL commands use this C function call. NOTE: once the username and password has been set the only way to clear it is by setting the username and password to an empty string or by restarting the TCL interpreter. Example: set result [LDAP_SetNamePassword “” “”]
Parameters:

LDAP_SetNamePassword Username Password

Return Values:

SUCCEEDED

LDAP_Connect

Overview:

It connects to an LDAP server, and binds to an LDAP directory. This can be used if the connection takes too long, and you want to keep the connection open. I do not recommend using this command, try using the LDAP_AllInOneSearch instead, which has the LDAP connection and disconnect (unbind) built in to it.

Parameters:

LDAP_Connect Server Port Directory_Base

Return Values:

1. SUCCEEDED

2. ERROR {Description of Error}

Example Code:

if { [catch {

 # Load the LDAP package.

 package require LDAP

 # Connect to the LDAP Server and TCP Port.

 set result [LDAP_Connect "INSERT_SERVER_NAME" "389"]

 puts $result
LDAP_Search

Overview:

Before using this command you must first connect to the LDAP server using the LDAP_Connect command. NOTE: An optional TCL method call is the LDAP_AllInOneSearch that has the LDAP search built in.

Parameters:

LDAP_AllInOneSearch Directory_Base SearchFilter {Return Attributes [Optional]}

Possible Return Values:

1. TCL list of all entries that matched the search filter. If more than one entry matches the search filter then a two-dimensional list is returned.

2. NULL (An empty string is returned to the TCL interprter if no entries matched the search filter)
3. ERROR {followed by a description of the error}

Example Code:

if { [catch {

 # Load the LDAP package.

 package require LDAP

 # Connect to the LDAP Server and TCP Port.

 set result [LDAP_Connect "INSERT_SERVER_NAME" "389"]

 puts $result

 # Set the LDAP username and password (Optional, not needed for most directories)

 set result [LDAP_SetNamePassword "" ""]

 puts $result

 # Perform a search against a valid search base and search filter.

 set result [LDAP_Search "o=trentu" (mail=*nichols*)]

 puts $result

 puts ""

 # Parse the LDAP record(s) returned in the TCL list.

 for {set j 0} {$j <[llength $result]} {incr j} {

 set myRecord [lindex $result $j]

 for {set i 0} {$i <[llength $myRecord] } {incr i 2} {

 puts "[lindex $myRecord $i]=[lindex $myRecord [expr $i + 1]]"

 }

 puts ""

 }

 # Unbind from the LDAP directory.

 set result [LDAP_Disconnect]

 puts $result

} doRequestCatch] } {

 puts $doRequestCatch"

}

LDAP_Disconnect
Overview: Unbinds from an LDAP directory. This command is only need if the LDAP_Connect call is used. The LDAP_AllInSearch has the LDAP unbind built in.
Parameters: LDAP_Disconnect

Return Values:

SUCCEEDED

FAILED {If no connection is currently open}

Example Code:

 # Unbind from the LDAP directory.

 set result [LDAP_Disconnect]

 puts $result

Known Issues and Limitations

1. The LDAP TCL extension only supports one thread per TCL interpreter. Meaning, that you can not have multiple searches happening at the same time.

2. Many LDAP servers, Exchange, Lotus Notes, etc. have an administrative limit on the number or entries (records) that can be returned. This is usually not an issue if you are interested in only finding a match on one record using a search filter.

3. The LDAP TCL extension can raise a TCL error if something has gone wrong, because of this you should encapsulate the searches using the TCL catch command.

Bibliography and Additional Resources

[1] Practical Programming in TCL and TK / Brent B. Welch. – 3rd ed. P. cm. ISBN 0-13-022028-0

[2] LDAP: Programming Directory-Enabled Applications with Lightweight Directory Access Protocol / Timothy A Howes and Mark C. Smith – ISBN 1-57870-000-0
LDAP TCL Integration source code and documentation written by Scott Nichols

