
 for
rk

fact,
ce and
y Tcl

uages
ript-

o-
, the
he
lat-
ular
Tcl and Java Integration

Ray Johnson

Sun Microsystems Laboratories
901 San Antonio, MS UMTV-29-232

Palo Alto, CA 94303-4900
rjohnson@eng.sun.com

February 3, 1998

Abstract
This paper describes the motivations and strategies behind our group’s efforts to integrate
the Tcl and Java programming languages. From the Java perspective, we wish to create a
powerful scripting solution for Java applications and operating environments. From the
Tcl perspective, we want to allow for cross-platform Tcl extensions and leverage the use-
ful features and user community Java has to offer. We are specifically focusing on Java
tasks like Java Bean manipulation, where a scripting solution is preferable to using
straight Java code. Our goal is to create a synergy between Tcl and Java, similar to that of
Visual Basic and Visual C++ on the Microsoft desktop, which makes both languages more
powerful together than they are individually.

1 Introduction

In the simplest of terms, the goal of our project is to make Tcl the scripting language
the Java platform. We envision a dual language architecture where Tcl and Java wo
together in a seamless way. Tcl and Java are very well suited for this integration. In
both languages share many of the same design goals such as platform independen
the ability to run untrusted code. This white paper points out many of the reasons wh
and Java integration will make both languages more powerful.

Despite the languages shared philosophies, it is important to note that these two lang
have historically had very different uses. The Tcl[1] scripting language is a classic sc
ing language, ideal for embedding into other applications. Tcl started out in the UNIX
world as a way to easily create tools with a command line interface. Tcl was first intr
duced in 1990 by its creator, John Ousterhout, a professor at U.C. Berkeley. In 1994
Tcl project moved from Berkeley to Sun Microsystems Laboratories where ports to t
Macintosh and Windows platforms were started. The goal was to make Tcl a cross-p
form scripting language. Today, with some 500,000 users, Tcl is one of the most pop
cross-platform scripting languages.
UNIX is registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun Logo, Java, JavaBeans and JavaScript are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries

 lan-
icro-

came
n’t
on
ow-

IS
 within

 alter-
d

l for the
wo
nts,
Tcl
 a good
uni-
l are

enta-
e
, pro-
n for
ach
ut our

s
 Java
 some
ns

aps

am-
velop-
s

Java[2], on the other hand, is a new twist on the classic 3rd generation programming
guage (3GL). While the Tcl project was just getting underway, Java, created at Sun M
systems by James Gosling, started to make its incredible introduction. Java soon be
the biggest entry of a new programming language the industry has ever seen. It was
long before people were questioning the role of Tcl with respect to Java. This questi
was difficult to answer at first (we had to learn Java to really answer the question). H
ever, it was obvious that the languages were nothing alike. Tcl was geared for small
scripts, rapid application development (RAD), and dynamic environments. Java was
geared for programming larger more complex applications. It is only now that many
developers and other customers of Java are seeing the need for a scripting language
the Java platform. We aim to provide that.

The goal of our project, however, is much more than just providing another language
native for the Java platform. Rather, we aim to create a tight synergy between Tcl an
Java. The idea is to create an architecture where the developer can use the right too
right job. The architecture is a dual-language environment that is meant to support t
very different communities of developers. Java should be used for creating compone
frameworks, and other core technology that requires writing large detailed systems.
should be used as glue code, a control language, or other smaller tasks that require
deal of dynamism or high-level control. But most importantly the developer can comm
cate seamlessly between the two languages. The result is that together Java and Tc
more powerful than they are individually.

Our current deliverable technologies include four items. Jacl is a 100% Java implem
tion of Tcl. Tcl Blend allows the (C based) Tcl interpreter to load and interact with th
Java VM and vice versa. The Java Package, which is part of both Jacl and Tcl Blend
vides the communication between Tcl and Java. Finally we are working on a Tcl Bea
Java Studio that adds the power of Tcl for connecting Studio beans. We discuss e
of these projects in greater detail later in this paper. We also suggest that you check o
home page[3] for the most up-to-date information about our projects.

The rest of this paper is outlined in the following way: Section 2 discusses the variou
motivations behind our project from different perspectives. Section 3 focuses on the
Package and the synergy we attain by integrating Java and Tcl. Section 4 discusses
possible applications of this technology. Our implementation strategy and current pla
are outlined in Section 5. Finally, Section 6 discusses related work and Section 7 wr
things up.

2 Motivations

This section discusses the various motivations for integrating the Tcl and Java progr
ming languages. Integrating Tcl and Java brings new power to both Tcl and Java de
ers. While describing our motivations, this section explicitly describes the motivation
from the unique points of view of both Java and Tcl programmers.
February 3, 1998 Tcl and Java Integration 2

-
 com-

a
a
ed
ity is

o-
ems
 the

s. By
va
ppli-
e Tcl

 add a
 In
vides
)

tom
sing

of

g on
specific
rful
 sys-
 5-10
 vari-
lop-
2.1 What Tcl provides for Java users.

A new language for building Java applications.Java is best classified as a system pro
gramming language. It is ideal for building components from scratch and has all the
plex data structures, type safety, and other features a developer needs to build large
systems. The complexity in components is in the representation and handling of dat
structures and algorithms. For many tasks, however, a scripting language like Tcl is
much better tool. Scripting languages are designed for building small to medium siz
applications that focus on rapid development or dynamic behavior. Here, the complex
in the connections. Scripting languages are ideal for “gluing” together existing comp
nents or applications. For a more detailed discussion on the trade-offs between syst
programming and scripting, please see a white paper written by John Ousterhout on
subject. [4][5]

Add scripting to Java applications.Tcl has an interesting attribute not found in many
scripting languages: It is a library that is easy to embed into existing Java application
using the Tcl library, application developers can add scripting capabilities to their Ja
based applications. It is easy to extend the Tcl language to provide very high level, a
cation specific commands that interface a product’s specific application features to th
language. By adding scripting capabilities to their applications, Java developers can
great deal of power, flexibility and end user customization to their Java applications.
addition, having scripting capabilities available across a suite of Java applications pro
a way to tie those applications together, much like Visual Basic for Applications (VBA
does for Microsoft Office. Figure 1 shows how end users could even create new cus
applications by using Tcl to access the functionality of scriptable Java applications. U
the Tcl library, Java developers can add scripting capabilities with the least amount
effort.

A better interface to JavaBeans components.The benefits described above are the
same as the benefits a C programmer enjoys by using Tcl. We are, however, workin
several features that are Java specific and, in fact, are only possible because of the
features of the Java environment. We have created new interfaces to script the powe
JavaBeans component mechanism. Tcl has always been a great language for gluing
tems together. We expect that defining the connections between components will be
times faster with our Tcl interfaces than writing the connections in Java. There are a
ety of reasons for this that the paper discusses in fuller detail in Section 3. Any deve

GUI Tcl

Java
Application

GUI Tcl

Java
Application

Database

GUI Tcl

Java
Application

Spreadsheet Chart Tool

End-User
Application

Tcl GUI

Figure 1. Tcl can be used to give a suite of Java applications a common interface for extending
the applications and for end-user customization. This notion is similar to how Microsoft
extends it’s Office application suite with VBA.
February 3, 1998 Tcl and Java Integration 3

luate

roto-
eate
ds on
 Java
roto-
ve
ce.
e that
ve an
 on
the

s
 and
his
elop-
s. The
 C
remen-
oved
ct is a

 a
e sys-
addi-
r

n-
ment organization interested in doing work with JavaBeans will certainly want to eva
Tcl as a tool for gluing them together.

A tool for prototyping and testing. In addition to our Beans interfaces, we have also
developed a general interface to the Java Reflection API’s that makes Tcl ideal for p
typing and testing Java applications. Our interface allows Tcl code to dynamically cr
and destroy objects in the Java VM. Tcl can also set the fields for and call the metho
any Java object. This gives incredible power for interfacing Tcl code to the rest of the
environment. Among other things, a Java developer can use this feature to rapidly p
type a Java module in Tcl, change features quickly and on the fly, and once they ha
decided upon an actual feature set, rewrite the code in Java for maximum performan
The reflection interfaces are also ideal for testing Java code. It’s easy to write Tcl cod
can call every method in your API and test error conditions and return results. We gi
example of using Tcl for testing in Section 4.2. For now, let’s just say that depending
the kind of work Java developers need to do, Tcl can be a vital tool for accelerating
development process.

A bridge for porting legacy code. Tcl has always been good at gluing together variou
systems into an integrated whole. Tcl features and extensions like exec, expect[12],
TkSteal, are ideal for wrapping legacy systems into new systems. Tcl Blend allows t
same power for integrating C based code into the Java platform. With Tcl Blend dev
ers use the Tcl scripting language to glue together legacy code with new Java system
illustration in Figure 2 shows how Tcl Blend gives developers a clear path for porting
code to become 100% Java in an incremental way. Over time, the developer can inc
tally port their legacy applications to Java. When all of your C based code is finally m
to Java, the developer can switch from the C based Tcl to using Jacl. The end produ
completely Java based solution.

2.2 What Java provides for Tcl users.

Cross-platform extensions.Tcl was originally designed as a library for quickly creating
new scripting language for a given tool. As such Tcl has always been a two languag
tem. The basic Tcl library contains a standard interpreter, control structures, etc. In
tion, the language was designed to be extended with interesting functionality via C o
C++. As the language has grown it has shifted to being a cross-platform scripting la

Tcl Blend

Java Code

C Code
Tcl Blend

Java Code

C Code
Jacl

Java Code

Figure 2. This figure shows the incremental transition to Java by using Tcl Blend to integrate
new Java code and legacy code to eventually using Jacl for a 100% Java solution.
February 3, 1998 Tcl and Java Integration 4

esult,
uage

orm, a

he
T,

 Fur-
per

g on

ould
se
ple-

a

ay
king
g

l,

 gen-
atch or
rge

ance,
ortant
.

 lan-
rom
n writ-
ting
 with

 types
 by

lity of
e glu-
ering
ed may
guage. Unfortunately, the extensions that people wrote were written in C and, as a r
were not portable. Java provides us with a way to extend the Tcl interpreter in a lang
that is cross-platform. By using Java, users can write extensions that are cross-platf
feature long desired by Tcl users.

Tcl runs on more platforms.The portability of Tcl has always been a strong draw to t
language. Tcl already runs on Macintosh 68k & PowerPC, Windows 95 & Windows N
and all flavors of UNIX. However, by implementing Tcl in the Java programming lan-
guage, we allow Tcl users to run Tcl code on the Java Station and in web browsers.
thermore, Tcl will run on any new platform that Java is ported, sparing the Tcl develo
the trouble of porting. This is of particular value considering the amount of work goin
with respect to Java environments.

Tcl can take advantage of Java features.Tcl will be able to take advantage of many of
the numerous advanced API’s being added to the Java platform. For example, Tcl c
use the new 3D API’s to add new widgets to the Tcl/Tk toolkit. The benefit is that the
API’s would be cross-platform and the extension writer would not have to do a new im
mentation for each platform. Furthermore, the Java Package will make using the Jav
API’s possible directly from Tcl without writing new Tcl commands.

2.3 Tcl and Java Synergy: A new architecture

Aside from the specific benefits Tcl may provide to Java users or the benefits Java m
provide to Tcl users, there are additional benefits that come from the languages wor
together. These benefits are made more profound if you notice a split that is occurrin
between different communities in the developer world. The split separates traditiona
3GL based, “component developers” from higher level, scripting centric, “application
assemblers”.

What we call “component developers” generally include C, C++, Java and other 3rd
eration language (3GL) developers. These developers tend to develop code from scr
generic frameworks. They primarily build operating systems, large applications or la
reusable components. The tools they use (including the languages) focus on perform
memory management, protocols and other low-level system characteristics. The imp
engineering choices of these systems center around data structures and algorithms

“Application assemblers”, on the other hand, consist of developers that use scripting
guages, visual programming applications, and other 4GL tools. Rather than coding f
scratch, these developers tend to “glue” together large modules or applications (ofte
ten in a 3GL). That is, they might quickly assemble applications out of large pre-exis
components, or perhaps they will wrap existing legacy systems and get them to work
new systems. Low-level system characteristics are usually not a concern with these
of applications because the amount of code is usually really small and often dwarfed
the larger components. Rather, application assemblers look for tools that have flexibi
communication, can deal with types dynamically, or have other features that aid in th
ing of a myriad of different components and applications. Here, the important engine
choices focus on the connections between components. While the systems assembl
February 3, 1998 Tcl and Java Integration 5

en by

nent”
plica-
anted
l and
mpo-
an-
ve

roach
 sys-
) for
 com-
uickly
. This

le
ed on
ys,
cl
isual
e Tcl
al

e Java
nother
the
texts

Pack-
l exten-

f the
ting
be quite large, the amount of code written tends to be much smaller than what’s writt
systems developers.

For the Java platform, we envision an architecture that includes Java as the “compo
language used by component developers and Tcl as the “glue” language used by ap
tion assemblers. We believe this is an ideal match. Java has all the characteristics w
in a systems language. In addition, with features like JavaBeans, the memory mode
the Reflection API, Java is a better language than C or C++ for building reusable co
nents that can be manipulated by other tools. On the flip side, Tcl is an ideal “glue” l
guage because of its dynamic types, flexible runtime model, and extensibility. We ha
created the Java Package to make this match even better.

This dual language approach to development is not new. Microsoft has used the app
very effectively on the Windows desktop. Windows developers use Visual C/C++ for
tems programming and the development of components. They use Visual Basic (VB
scripting components into small to medium sized applications. VB users buy (reuse)
ponents from developers that specialize in developing components. The VB users q
write code that combines these components into small to medium sized applications
model has worked very well for Microsoft and Microsoft’s customers.

The problem of course, is that Microsoft has used Visual C/C++ and VB to lock peop
into the Windows desktop environment. Java and Tcl, on the other hand, have focus
being cross-platform which is essential for network based computing. In all other wa
however, the relationship is similar. VB can be used to script ActiveX components. T
can be used to script JavaBeans. C based applications can be made scriptable by V
Basic for Applications (VBA). Java based applications can be made scriptable with th
library. In short: Java and Tcl are to network computing what Visual C/C++ and Visu
Basic are to the Microsoft desktop.

3 Scripting Java: The Java Package

This section focuses on the specific ways in which Tcl has been extended to script th
VM. These are specific features that stand Tcl and Java integration apart from just a
port of a programming language to the Java platform. We will not, however, discuss
specific benefits of Tcl or Java per se which have been dealt with better in other con
[1][2].

The sum of these features that integrate Tcl with Java is something called the Java
age. The Java Package is available in both Tcl Blend and Jacl. They are a set of Tc
sions that interact heavily with the Java VM. The Java Package works with JDK 1.1 or
later.

3.1 Using the Java Reflection API’s from Tcl

As of JDK 1.1, Java has had a new reflection API which makes more dynamic use o
Java VM a possibility. The reflection API’s also make it possible to script Java. Scrip
February 3, 1998 Tcl and Java Integration 6

 object
, they
ts

to the
l and

. Fur-
PI’s
a. The

on of
owever,

list of
Java means that the developer can dynamically determine methods and fields of an
or class. They can call or manipulate those methods and fields. But most importantly
can do all those things during runtime without having prior knowledge of which objec
and classes will exist during runtime.

The following is a list of the types of things we can do with the Java Package thanks
Reflection API’s in JDK 1.1. All of these features will also be in the 1.0 release of Jac
Tcl Blend.

• Create new instances of any public class including arrays.

• Call methods on objects or static methods for a given class.

• Access or set any public field of an object (or class if field is static).

• Determine the class, base class or super class of an object.

• Determine the public methods and fields available for a given object or class.

• Load new Java classes from a class path specified in Tcl.

• Define new Java classes from a byte stream in Tcl.

While the list is not complete, it gives a good idea of the power of the Java Package
thermore, using this power from Tcl is vastly easier to do than using the reflection A
directly. In short, one can do from Tcl, via the Java Package, what one can do in Jav
example in Figure 3 gives a very simple example of the Java Package in action.

3.2 Scripting Java Beans

In addition to the Reflection support, the Java Package also supports the manipulati
JavaBeans. JavaBeans are the component mechanism used in the Java platform. H
in its simplest form Beans are just classes that follow a set of naming conventions.

The Java Package includes several ways to manipulate JavaBeans. Here is a short
the kinds of things that are possible with the Java Package:

• Create new beans and call any method on the bean.

set f [java::new java.awt.Frame]

$f setTitle “Hello World”

set text [java::new java.awt.TextArea]

$text setText “Simple example of Tcl scripting Java.”

$f {add java.awt.Component} $text

$f setLocation 100 100

$f pack

$f toFront

Figure 3.This figure shows the Java Package creating a simple user interface using
the AWT toolkit.
February 3, 1998 Tcl and Java Integration 7

e that
t on a

se the
ode!
ting
r to use.

ripting
ple-
 are

appli-
 that

gives
any

wever,
• Set or get any property defined for the JavaBean.

• Determine the list of events supported by the bean.

• Register Tcl call backs to bean event listeners.

The last feature is perhaps one of the most interesting. Java developers must ensur
they have the right type of object interface before they can register interest in an even
particular bean. This usually involves writing new “adaptor” classes that glue the two
objects together. With Tcl’s Java Package however, the developer simply needs to u
java::bind command to register a Tcl script with a new Java object. Only one line of c
(See Figure 4 for a simple example.) Of course, we are doing the extra work of crea
the adaptor classes behind the scenes. The result, however, is that beans are easie

3.3 Future enhancements to the Java Package

We are still researching ways in which we can improve the Java Package to make sc
Java from Tcl even easier. Some of the features we are currently planning include im
menting Java interfaces in Tcl and subclassing a Java class with Tcl procedures. We
also considering generating complete JavaBeans that are implemented in Tcl. Java
cations using these Tcl-generated beans would not even know they are using beans
were developed with the Tcl scripting language.

4 Applications

The number of possible applications of Jacl and Tcl Blend are limitless. This section
a few important examples that we feel may be early applications of our technology. M
of these application areas are traditional areas of expertise for the Tcl language. Ho
some will leverage this new synergy we are creating between Tcl and Java.

set f [java::new java.awt.Frame]

set b [java::new java.awt.Button " Exit "]

java::bind $b actionPerformed {set done yes}

$f {add java.awt.Component} $but

$f setLocation 100 100

$f pack

$f toFront

set done "no"

vwait done

$f dispose

Figure 4.This figure shows the use of the java::bind command to register a callback
with the Button bean. Clicking the button will set the variable “done” which will
allow the script to continue and dispose the Frame.
February 3, 1998 Tcl and Java Integration 8

 Tcl
 the

of
 better
00

l to
er

alled
of the

pli-
gacy
ever,

oto-

er-
g fea-
dd

out
e
ier
4.1 Web Server CGI

One of the largest growth areas for Tcl is with CGI scripting. Many people are finding
easier to learn, use, and maintain than Perl. Now that Jacl brings the power of Tcl to
Java platform, we expect Jacl to suit the CGI needs of Java based web servers.

4.2 Testing

Tcl is often used for writing white box test scripts. It is ideal for testing little snippets
code for an expected outcome. With our use of the Java reflection API’s Jacl is even
suited for this type of application[6]. The current Tcl implementation has about 211,0
lines of test code written in Tcl. The existing Tcl test suite has enabled us to port Tc
Java very quickly and has also assured us that our implementation is rock solid. Oth
developers will find our testing framework easy to adapt to their own testing needs.

Figure 5 contains an example pulled directly from our test suite. Java code can be c
and manipulated directly with our Java scripting interface. The test command is part
testing framework which we ship with our source distributions for Tcl.

4.3 Small IR Applications

Tcl has always been ideal for gluing together functionality to quickly create useful ap
cations for the enterprise. Much of this is due to Tk, which is used to add a GUI to le
applications or complex systems. Unfortunately, Tk has yet to be ported to Java. How
with our support for Java Beans, Jacl is already a very useful tool for constructing pr
types or full featured applications.

4.4 Scripting Applications

Tcl was invented to be embedded in applications to provide them with a scripting int
face. Jacl is a library that can be used by Java application developers to add scriptin
tures to their applications. Jacl is far and away the easiest and most flexible way to a
scripting to your Java based applications. (See Figure 1 on page 3.)

4.5 Transitioning to the Java Platform

Our native Tcl implementation of Tcl Blend allows developers to migrate to Java with
losing functionality available in legacy (or C-based) applications. Tcl Blend allows th
developer to create “hybrid” systems implemented in both Java and C in a much eas

test invoke-11.8 {getClassByName} {

 set k [java::new {java.lang.Integer int} 1]

 java::instanceof $k java.lang.Integer

} 1

Figure 5.Each test runs a script and compares the result to an expected result. This
test is making sure a created object is of the proper type.
February 3, 1998 Tcl and Java Integration 9

C
d the
heir
e 4.)

ith the
tly
-

g that
 bean
tle

con-
 bean

er in
f the
manner than using the JNI (Java Native Interface) directly from within C. Over time,
based code can migrate to Java. Eventually, Tcl Blend can be replaced with Jacl an
result is a 100% Java solution. Developers looking for a way to integrate Java with t
legacy systems should really consider the power of Tcl Blend. (See Figure 2 on pag

4.6 Writing new components: Java Studio

We are currently working on a Java Studio bean component that is based on Jacl. W
Tcl component, Java Studio developers can write new behavior for Java Studio direc
with Tcl. We are planing to eventually allow developers to write new Java Beans com
pletely in Tcl. Java users can use those Tcl beans directly without ever even knowin
the beans are implemented with Tcl. Figure 6 contains an example of a Java Studio
written in Tcl that mimics the Memory bean that ships with Java Studio. Note how lit
Tcl code is needed!

5 Implementation

This section will discuss our implementation strategy and give a rough roadmap for
struction. The products we are currently constructing are Tcl Blend, Jacl, and the Tcl
for Java Studio. This section will discuss our implementation plans for each project.

5.1 Java & Native Tcl: Tcl Blend

One reason for doing Tcl Blend is to get the full power of Tcl and Java working togeth
the shortest period of time. Tcl Blend allows the user to use all of Tcl and Tk and all o

Set the following list to hold the memory locations for this bean.

set memory_locations {store1 store2}

foreach x $memory_locations {

 studio::port in “$x input” -transfer dynamic

 studio::port out “$x output” -location east -transfer dynamic

}

studio::port in Trigger -location north

studio::bind Trigger {

 foreach x $memory_locations {

 upvar #0 “$x input” input

 upvar #0 “$x output” output

 if {[info exists input]} {

 set output [$input toString]

 }

 }

}

Figure 6.This example Studio Bean creates input and output pins for each memory
location. A trigger pin is also created that, when fired, will transfer any data that came
in the input pins to the output pins.
February 3, 1998 Tcl and Java Integration 10

ws
ow

omer
to
end,

 goal
em-
ffort.

code.
affed
rs.

ul. The
her
we are
ith the
hile

e will
s until

e
 the
k is
 one
he

) in
create
t the

h

features of Java. Tcl Blend will be feature complete long before Jacl. This is good ne
for Java developers as well. They will be able to test their Tcl Java code now and kn
that there is a planned roadmap to make that 100% Java in the future.

Tcl Blend is progressing smoothly. The biggest task will be to get Tcl Blend to work
everywhere Tcl and Java 1.1 both exist. This will be an on going job that will be cust
driven. We also still need to integrate Tk and Java window systems to allow the two
work together. Even with the limited resources we currently have available for Tcl Bl
we should be feature complete within calendar year 1998.

5.2 100% Java: Jacl

Of course, for many users it is important to have a 100% Java solution. Our long term
is to port all of Tcl & Tk to the Java programming language. However, it must be rem
bered that Tcl and Tk are very large systems and a full port will take a great deal of e
Tcl is implemented in some 80,000 lines of C code. Tk is another 120,000 lines of C
Our current estimates for a full port is around 6 to 10 man years. We are currently st
with three full time engineers and are looking at an elapsed time of around three yea
The work is such that we can do a lot of things in parallel and we could dramatically
reduce the schedule if given additional man power.

The good news is that the core of Tcl has already been ported and is extremely usef
core includes all of the control structures for the language, basic file support, and ot
important features like regular expressions. Because Tcl has such a large test suite
also assured that the code ported so far is very stable and completely compatible w
C version of Tcl. We plan to release version 1.0 of Jacl in the first quarter of 1998. W
this will represent only a subset of Tcl, it will be of commercial quality.

After this initial release, we will be making regular releases that will incrementally
increase the subset of Tcl and Tk that Jacl supports. Exactly what those features ar
depend heavily on customer demand. We expect that we will have bi-annual release
Tcl and Tk are completely ported.

5.3 Strategy for porting Tk

Due to the length of time it will take to port all of Tk we are looking for ways to reduc
our schedule yet still retain the most value. Specifically, we want to find a way to get
value of Tk without having to do a full port. It turns out that a majority of the code in T
in the widgets themselves. Just the Text and canvas widgets alone make up roughly
third of all of Tk. We also would like a way to better integrate the Tk widget set with t
AWT widget set.

Instead of doing a straight port of Tk we plan to “wrap” existing AWT widgets (beans
such a way that they look and behave like Tk widgets. In fact, we hope to be able to
a mechanism where any Java bean with a GUI can be used by Tk directly. Tk will ge
benefit of a large set of reusable widgets without our having to write or port too muc
code.
February 3, 1998 Tcl and Java Integration 11

tly
to
t they
lso
son is

pe to
an
ava

 we
are
t in

s
f CGI

ted

for a
 an
va
 Java
ge but

o the
reated
 has
ed on
ns to

 Jav-
sual
th a
However, many of the widgets in Tk - especially the canvas and text widgets are vas
superior to the AWT widgets. We will eventually need to port these widgets in order
obtain the full benefits of Tk. We hope to port these Tk widgets as Java beans so tha
will be useful outside of the context of Tk as well. For complete compatibility we will a
need to create new Beans for the basic widgets like Buttons and Scrollbars. The rea
that the Tk widgets (for the most part) have a much richer feature set.

5.4 Tcl Bean for Java Studio

The first version of the Tcl Bean for Java Studio is nearing completion. In fact, we ho
release the bean with Jacl 1.0. We plan to evaluate customer response to the Tcl Be
before planning our future feature set. Our goal is to get the Tcl Bean bundled with J
Studio. Contact me directly if you have questions about this product.

6 Related Work

Tcl is not the only language being ported to the Java VM. Some of the other projects
know of are included below. We also discuss the differences between the work they
doing and what we are trying to do. Please remember that this list is only a snapsho
time and information about various efforts is sketchy at best.

Perl. Perl[8] is one of the more well known scripting languages. Traditionally Perl ha
been used for data conversion or processing but has recently dominated the world o
scripting. It is rumored that O’Reilly & Company’s “Perl Resource Kit” has some limi
support for Java.

Python. Python[9] is also a cross-platform scripting language that has been around
few years. While it hasn’t attained the wide spread use of Tcl or Perl, it certainly has
avid following. Currently there is an effort to port the Python scripting language to Ja
called JPython[10]. In fact, their approach is to compile Python code directly down to
byte codes. The JPython work currently doesn’t include anything like the Java Packa
their work, like ours, is on going.[13]

JavaScript. One of the most common questions we receive is, “how does this relate t
JavaScript[11] programming language?” The simple answer is that JavaScript was c
for, and has always focused on web page scripting. JavaScript is not geared for, nor
been used to any extent for application development. Tcl, on the other hand, is focus
creating or working with applications. As far as we can tell, Netscape has no clear pla
make JavaScript a general purpose scripting language.

Visual Basic. Visual Basic has some efforts to make Visual Basic work with Java and
aBeans. However, their focus remains on supporting ActiveX. Current offerings of Vi
Basic are also not implemented in Java and are not cross-platform. Nonetheless, wi
company as large as Microsoft, you must closely watch what they do in this space.
February 3, 1998 Tcl and Java Integration 12

cl
for the
e
lution.
 it
er-
ment
7 Conclusions

This paper clearly points out motivations, feasibility, and benefits of integrating the T
and Java programming languages. Depending on the customer, a scripting solution
Java platform may range from very useful to outright essential. Our initial efforts hav
been received with high praise, and we have a clear path to providing a complete so
Some customers are already receiving the benefits of this work, and more are trying
every day. Any serious developer working on applications for the Java platform will c
tainly find the synergy between Tcl and Java a great tool for addressing their develop
needs.

8 References
[1] J. Ousterhout,Tcl and the Tk Toolkit, Addison-Wesley, ISBN 0-201-63337-X, 1994.

[2] K.Arnold and J. Gosling,The Java Programming Language, Addison-Wesley, ISBN 0-201-63455-4,
1996.

[3] Jacl & Tcl Blend home page: http://sunscript.sun.com/java/

[4] J. Ousterhout,Scripting: Higher Level Programming for the 21st Century, http://www.sun-
labs.com/people/john.ousterhout/scripting.html .

[5] J. Ousterhout,Additional Information for Scripting White Paper, http://www.sunlabs.com/
people/john.ousterhout/scriptextra.html .

[6] S. Stanton, “TclBlend: Blending Tcl and Java”,Dr. Dobb’s Journal, pp. 50-54, Feb 1998.

[7] B. Kernighan and D. Ritchie,The C Programming Language, Second Edition, Prentice Hall, ISBN 0-
13-110362-8, 1988.

[8] L. Wall, T. Christiansen, and R. Schwartz,Programming Perl, Second Edition, O’Reilly and Associ-
ates, ISBN 1-56592-149-6, 1996.

[9] Watters, A., G. van Rossum, and J. C. Ahlstrom,Internet Programming with Python, MIS Press/ Henry
Holt Publishers, 1996.

[10] J. Hugunin,Python and Java: The Best of Both Worlds, <URL:http://www.python.org/jpython/
ipc6paper.html>

[11] D. Flanagan,JavaScript: The Definitive Guide, Second Edition, O’Reilly and Associates, ISBN 1-
56592-234-4, 1997.

[12] D. Libes,Exploring Expect, O’Reilly and Associates, ISBN 1-56592-090-2, 1995.

[13] Home page for O’Reilly Perl product: http://perl.oreilly.com/
February 3, 1998 Tcl and Java Integration 13

	1 Introduction
	2 Motivations
	2.1 What Tcl provides for Java users.
	Figure 1. Tcl can be used to give a suite of Java ...
	Figure 2. This figure shows the incremental transi...

	2.2 What Java provides for Tcl users.
	2.3 Tcl and Java Synergy: A new architecture

	3 Scripting Java: The Java Package
	3.1 Using the Java Reflection API’s from Tcl
	Figure 3. This figure shows the Java Package creat...

	3.2 Scripting Java Beans
	Figure 4. This figure shows the use of the java::b...

	3.3 Future enhancements to the Java Package

	4 Applications
	4.1 Web Server CGI
	4.2 Testing
	Figure 5. Each test runs a script and compares the...

	4.3 Small IR Applications
	4.4 Scripting Applications
	4.5 Transitioning to the Java Platform
	4.6 Writing new components: Java Studio
	Figure 6. This example Studio Bean creates input a...

	5 Implementation
	5.1 Java & Native Tcl: Tcl Blend
	5.2 100% Java: Jacl
	5.3 Strategy for porting Tk
	5.4 Tcl Bean for Java Studio

	6 Related Work
	7 Conclusions
	8 References

